
Comparing Language Workbenches

Roman Stoffel
University of Applied Sciences Rapperswil (HSR), Switzerland

MSE-seminar: Program Analysis and Transformation

December 23, 2010

Abstract

To create a domain specific language basic tools like the parser, compiler or interpreted
have to implemented. Additionally a integrated development environment (IDE) for a
language is expected today. Therefore tools which allow you to define and implement
domain specific languages including the IDE start to show up. In this paper three different
approaches to tackle these challenges are introduces and compared.

1 Introduction

Domain specific languages (DSL) have been
around for ages. Recently creating and using
DSLs has become popular again. Embedded
DSLs, also known as internal DSL, are writ-
ten in a host language. They cleverly use con-
structs of the host language to create the DSL.
External DSLs are not embedded in an exist-
ing language. They are separate languages
which bring with their own syntax and tool-
chain. In this paper I take a look at tools to
create external DSLs.

There have been tools for creating exter-
nal DSLs for decades. However, this is not
enough. Today developers expect more than
just a raw compiler or interpreter. They ex-
pect a integrated development environment
(IDE) with error checking, code completion,
refactoring support and more assisting func-
tionality. This is where language workbenches
come into the picture. Language workbenches
[20] allow you to create and modify DSLs and
also directly use them. It assists you with cre-
ating a full-fledged IDE for the created DSLs.
In this paper I’m going to compare two lan-

guage workbenches which follow different ap-
proaches to tackle the problem and a tool for
domain driven code generation.

2 Criteria For Language
Workbenches

In order to compare the different tools, I lay
out some basic criteria for a language work-
bench. It is a collection of features and capa-
bilities which I expect from a development en-
vironment and functionality which is required
to create DSLs.

Integration with other tools: Programming
tools are rarely used standalone and in iso-
lation. Usually a whole collection of tools
is used for different purposes. This means
that a language workbench should work to-
gether with other tools. The most impor-
tant and widely used tools are version control
systems, build systems and testing environ-
ment. Therefore, I’m going to compare how
the different language workbenches work to-
gether with these three categories of tools.

Creating DSLs: An important feature is

1

support for creating DSLs. There are differ-
ent aspects to it. You need to be able to de-
fine the grammar and the semantic meaning of
your DSL. In order execute your DSL a trans-
formation to the language or runtime system
is required. Can the tool deal with complex
grammars? Are there possibilities to debug
the transformation from the source DSL to
the target language?

IDE assistance: A modern IDE like
Eclipse, IntelliJ IDEA or Visual Studio
has tons of features like syntax highlight-
ing, error detection, debugging-support, code-
navigation, auto completion and refactoring.
It also provides means to discover the lan-
guage and API of libraries by showing the ap-
propriate documentation and improvements-
suggestions. In a language workbench this is
even more important. These features should
be available for the language workbench itself
and for the created language. It should as-
sist the developer with implementing a DSL
and should also provide means and tools for
implementing IDE support for a DSL.

Combination of DSLs: The central idea of
LOP is to have languages which fit the prob-
lem domain. But usually software has differ-
ent concerns and it’s a good practice to sep-
arate these concerns. For LOP this means
that we have different DSLs for the different
concerns. As soon as we have multiple little
languages we want to combine them. So the
language workbench should provide means to
combine different existing languages.

Changing DSLs: In modern software de-
velopment refactoring is a regularly used prac-
tice to improve the code quality and keep a
system ready for future changes. We’ve also
seen that general purpose languages evolve
to adopt the changing environment Favre [7].
However, you it is very hard to change the
syntax or behavior of existing language con-
structs in a language, since that almost cer-
tainly breaks existing programs. You only can
add new features to to the language. In in a
LOP environment the development team has

tight control over the used languages. This
means that we should have two capabilities.
The first is to refactor existing code written in
the DSL. The second capability is to change
the DSL itself. For example to change the
DSL syntax and not break existing code and
still keep the semantic meaning of the lan-
guage.

3 The Tools

In this section I present three tools and give
an overview of their functionality.

3.1 Meta Programming System
MPS

In 2009 Jetbrains, known for their IDEs like
IntelliJ IDEA, RubyMine or Resharper, re-
leased their approach to LOP called Meta
Programming System (MPS) [10]. The idea
for MPS was introduced by Sergey Dmitriev
[24] and is heavily influenced by the Inten-
tional Programming approach [3].

The goal of MPS is to provide an environ-
ment where you develop and evolve your DSL
along with your application. It is not built to
create a new language which is then shipped
to a third party.

3.1.1 Programs as Models

What makes MPS quite unique is that it
stores the programs an object model instead
of text. In MPS the storage and the visual
representation of a program is separated. This
is different to regular programming languages
where the storage and visual representation is
the same, namely text. First of all we need
to understand the motivation behind this ap-
proach. This different take on programming
tries to avoid the inherent limitations of a text
based solution.

In a text-based programming language a
great effort is required to parse the source-
code. A precise grammar needs to be defined

2

to describe the language. With this the text
is parsed to an abstract syntax tree (AST)
which then is processed further. While lots of
tools assist you to define a grammar and cre-
ate parser it is still not an easy task. Defin-
ing an grammar is difficult and gets harder as
the language evolves. You always have to en-
sure that new language constructs don’t make
the grammar ambiguous. Also creating a ro-
bust parser is challenging. A parser should
be able to provide meaningful error messages.
And for IDE support a parser should be able
to deal with incomplete and invalid programs
[18]. This is still not enough. Today the
refactoring support of IDEs is getting more
and more sophisticated. Often refactorings
do their transformation on the AST. How-
ever, since the program is written in text this
transformation have to be translated back to
text and should preserve the layout of the text
[22, 14].

Now in MPS programs are persisted as a
model and not as text. This avoids all the
issues related to parsing and working with
text. Let’s explore this approach with exam-
ples. Let’s say we have an object oriented
language in MPS. How does such a model
look like? Well in an object oriented lan-
guage there are constructs like classes, meth-
ods, fields, method-calls, program-statements
etc. In MPS such constructs are called con-
cept. Let’s say we’ve a car-class. Then an in-
stance of the class-concept, which contains in-
stances of method-concept instance, is stored.
Now we can start to imagine how programs
are stored. In MPS we don’t create gram-
mars; instead we create a meta-model of our
language model, hence the name Meta Pro-
gramming System. This means to define a
language we create concepts such as a class-
concept, method-concepts etc. We also de-
scribe the relations between the different con-
cepts like that a class consists of methods and
fields. The layering of software in a base level
and a meta level is also known as reflection
pattern[5] and pursued by model driven ap-

proaches [8].

Program

Meta-Model

Car:Class

Start:Method

Drive:Method

Start() : MethodCall

Class-Concept

Instance of

Method-Concept
*

1

Instance of

SpeedUp():MethodCall

MethodCall-Concept*

1

Instance of

Figure 1: Programs as model

But how can we now write and use the
described language? For this we need some
kind visualization or editor. That’s exactly
what you create in MPS. You create one or
multiple editors which operate on the model
representation of your programs. An editor
can be a spread-sheet, a UML-editor, any-
thing which can visualize and manipulate the
program-model. Since MPS is focused on pro-
gramming language the editor usually mimics
a text-editor.

All in all we end up with a very sophisti-
cated program modeling system.

3.1.2 MPSs Collection of Languages

MPS brings a whole collection of languages
with it, which themselves are developed in
MPS [12]. The basic language is called ‘Base
Language’ and is a MPS version of Java. Ad-
ditionally MPS brings extensions to this Base

3

Language for different aspects, like DSLs for
collections, tuples, closures etc. You can re-
fer to those extensions in your project and
then use them. Besides the general purpose
Base Language and extensions there are lots
of other DSLs. There are languages for defin-
ing concepts, a language for describing edi-
tors, a language for describing refactorings, a
language for describing constrains on concepts
and so on. Those languages are used to create
DSLs in MPS.

3.1.3 Model to Model Transforma-
tions

The compilation process in MPS is a model to
model transformation. Your DSL-models are
translated into another model, typically into
a Base Language model. For this task MPS
again provides its own DSL.

As alternative you can transform a model
into text, for example, if there’s no appropri-
ate MPS language available. And MPS uses
the model to text transformation to transform
its Base Language to Java, which then is com-
piled and executed.

3.1.4 Talking To The Outside World

The DSLs you create have to talk to the out-
side world via other languages and existing
libraries. We already have seen that we can
transform a model to text if necessary. But we
probably want to use libraries in MPS. This
means we need to be able to refer to artifacts
which live outside of the MPS world. To do
this so called ‘stubs’ are used [13]. Stubs are
a representation of artifacts outside of MPS,
like existing API’s, frameworks etc. For ex-
ample we in MPS we need stups to use the
Java libraries like collections, net-work access
etc.

For stubs you first need a MPS repre-
sentation of your target language / frame-
work. Then you can define a stub-generator
in MPS, which transforms the external source-

code or API definition into MPS-stubs using
the previously declared MPS concepts. To-
gether with the right generators you can then
talk to the outside world.

A good example is MPS’s Base Language.
This language is the door to the Java world.
It models a language which is very close to
Java. Furthermore there’s a model to text
transformation for the Base Language to gen-
erate Java source code. The final piece is a
stub generator which creates stubs for Java-
API’s. These stubs then allow you to call ex-
isting Java libraries.

3.1.5 MPS by Example

Let’s take a look at a small example to illus-
trate the basic concepts of MPS. We create
a language to describe a data model. This
language consists of simple type definitions,
which have a type-name and a list of data
fields. A data type which describes a person
with first- and surname should look something
like this:
e n t i t y Person {

f i rstName : s t r i n g
sirname : s t r i n g

}

In MPS we first describe a meta-model of
our DSL with MPS-concepts. In our small
DSL there are three main concepts. There’s
the ’entity’-concept which is an abstract data
type description with a name and fields. A field
has a name and a type. The last concept is a
type, which can be a built-in type like string
and integer. Additionally a type can refer to
an entity. Our model of the language is shown
in figure 2. Now these relations are modeled
in MPS using the Structure Language. For
the entity concept we add a relation the field
concept and give it a name property. Because
a name is something very common there’s a
predefined concept ’INamedConcept’. This
brings some predefined capabilities with it,
like the renaming refactoring. Hence we in-
herit from that concept to get those features.

4

name

EntityConcept

name

FieldConcept

FieldType

StringType

IntType

*

1

*

1

EntityType
1

1 < type of

Figure 2: Model of our DSL Figure 3: Concepts of our DSL

Figure 4: Defining an editor Figure 5: Using the editor

The figure 3 shows the concept declaration for
the entity.

After defining the concept we create edi-
tors for all concepts, shown in figure 4. In our
DSL we need editors for our entity-concept,
field-concept etc. These editors define how
the DSL is displayed and edited. The editor
is described as a collection of cells. In each
cell has content, like lables, text-fields, more
cells, lay outing components, cells which iter-
ate over data etc. For each cell we can config-
ure additional behavior and style in a separate
window with a CSS-like language. For our
DSL we create an editor which first has some

label cells which contain with the ‘entity‘-text,
followed by a cell which has a text-field for the
entity name. After that we add a cell which
iterates over all fields of the entity model. The
resulting editor looks is shown in figure 5.

The final step is to create the transforma-
tion of our DSL to the Base Language. We
do this by writing an example of the desired
result first. Then we annotate this result with
macros. There are macros like loops, condi-
tionals, replacements etc. For our DSL we
start by writing a simple Java bean in the
Base Language. Then we start to annotate
the different parts of this prototype. We re-

5

Figure 6: Translate to Base Language

place the class-name with a macro to use the
name of the entity. We add a loop-macro to
translate fields into getters and setter and so
on and so forth. In figure 6 you see the tem-
plate with the macros on the left. On the right
is the behavior which we want to add to the
macro.

3.2 Actifsource

Actifsource [1] is a tool to create complex do-
main models and generate code out of them.
It doesn’t allow you to create a new language,
so it isn’t a really language workbench. There-
fore it cannot directly be compared with other
language workbenches. However, its model
based approach shares some similarities MPS.
In this paper we only take a brief look at Ac-
tifsource.

3.2.1 Similarities to MPS

As in MPS you programs are captured in mod-
els, which then are translated to a target lan-
guage. You build a meta-model of your prob-
lem domain. For example, when you build a
meta-model of a web-service then you describe
the building blocks like parameters, service
name, etc. Once the meta-model is built, you
use the building blocks to model your prob-

lem. This model then is translated to the tar-
get language, like Java, C#, Ruby etc.

Activsource is a regular Eclipse plug-in.
Therefore, it can be used together with all
the other features and plug-ins for the Eclipse
platform.

3.2.2 Differences to MPS

Now there is a big difference between MPS
and Actifsource. In Actifsource you cannot
build editors for your meta-model. Instead
you use a UML [21]-like language to describe
the meta-model and also the model of your
application. This means that you cannot cre-
ate a complete new language, but rather a
specialization of the UML model. The limi-
tations make Actifsource also much easier to
learn and use. You don’t need to create an ed-
itor for your meta-model, which can be quite
complex. On the other side it restricts you to
problems which can be modeled in UML.

The models in Actifsource are translated
to the text of the target language. For this a
special template language is used.

3.2.3 Different Purpose

Actifsource has a different target audience
than language workbenches. It’s a modeling

6

Figure 7: DSL model in Actifsource

Figure 8: Translation template Figure 9: Model in Actifsource

tool, which allows you to model your problems
with UML. Such modeling tools can assist you
in areas where there’s a lot of boiler plate code
and where modeling complex relationships is
important. However it cannot compete in ar-
eas where UML isn’t an appropriate language.

3.2.4 Actifsource by Example

We use the small language we used for the
MPS example to illustrate the features of Act-
ifsource. We start by implementing the model
shown in figure 2. The example implementa-
tion is shown in figure 7.

After that we can define the transforma-
tion from the model to Java source code. For
this the template language is used. It pro-
vides access to the model and can generate
code accordingly. We build a Java bean line
by line and access the model for the informa-
tion. This way, we can use the entity-name
as class name, use the fields for getters and
setters and so on. In figure 8 you can see the

transformation template for our DSL.
Now everything is ready. We can model

our entities with the UML dialect we’ve cre-
ated. This model is then translated to regular
Java code and ready to be used as shown in
figure 9. Then our model is translated to Java
source code.

c l a s s AddressBean{
p r i v a t e S t r i n g s t r e e t ;

p u b l i c void s e t S t r e e t (S t r i n g value){
t h i s . s t r e e t = value ;

}

p u b l i c S t r i n g g e t S t r e e t (){
re turn t h i s . s t r e e t ;

}

p r i v a t e S t r i n g c i t y ;

p u b l i c void s e t C i ty (S t r i n g value){
t h i s . c i t y = value ;

}

p u b l i c S t r i n g getCity (){
re turn t h i s . c i t y ;

}
}

7

3.3 Spoofax

The Spoofax language workbench [15] is based
on the popular Eclipse platform. In contrast
to MPS it uses a classic text based approach
for DSLs. The Spoofax platform provides
tooling for defining grammars, transforming
the DSL to the target language and provid-
ing IDE support for the DSL. You can edit
and develop the DSL in the same Eclipse in-
stance, which results in very tight feed-back
loop. To define the grammars the Syntax Def-
inition Formalism (SDF) [9, 6] is used. On
top of this the Stratego transformation lan-
guage [19] is used to transform the DSL to
the target language. Additionally, there is a
special editor language for defining syntax-
highlighting, code-outline, code-folding and
code-completion.

The Spoofax language workbench takes
advantage of the Eclipse IDE Meta-tooling
Platform IMP. The final language can be ex-
ported as regular Eclipse plug-in. This allows
you to distribute the created language to other
people.

3.3.1 Syntax Definition Formalism

The SDF-language is a pure and declarative
language Heering et al. [6], Kats et al. [16].
Like other grammar definition languages it
describes productions rules of the grammar.
But it doesn’t allow embedding any code or
rules with side effects. The SDF-language is
backed by a scannerless generalized-LR parser
(SGLR) [4]. Unlike other language categories
like LL(k), LL(*) or LALR(k) SGLR supports
the full range of context free grammars Kats
et al. [16], Visser [4]. This has a great advan-
tage. Context free grammars are closed under
composition. When you combine two context
free grammars the result is still a context free
grammar. This isn’t the case when you only
have a subset of context-free grammars like
with LL(k), LL(*) or LALR(k). In practice
this means that it is possible to combine dif-

ferent grammars with SDF. You can import
and reuse other existing grammars.

Now a context-free grammar may produce
an ambiguous parse-tree. In such cases the
SGLR parser returns a parse-forest instead of
parse-tree. In such cases you can express asso-
ciativity of productions and prioritize the pro-
duction rules and try to make the grammar
unambiguous. The fact that it SDF doesn’t
force this with a technical limitation makes
the process much easier a cleaner. The rules
which make a language unambiguous are not
’hidden’, but are clearly stated with annota-
tions.

3.3.2 Transformations as Fundamental
Concept

Spoofax uses the Stratego [19] transformation
language to describe transformations from
the source AST to the final target language.
Stratego allows you to write reduction rules
that describe transformation steps. Usually
such transformations consist of rules which
first remove the syntactic sugar from the
source language. For example, we transform
a high-level foreach loop to a lower level con-
structs like a while loop. Then other transfor-
mation rules describe the transformation from
the basic language constructs to the target
language.

However, Spoofax uses this transforma-
tion process not only for translating the
DSL into the target language. Transforma-
tions are a fundamental concept of Spoofax.
Think about features like error-messages, type
lookups or auto-completion. This can be de-
scribed as special transformation of the source
code. For error messages the code is trans-
formed to a list of errors. For type-references
the source-code is transformed to list of known
types. For auto-completion a list of possible
types, fields and methods is generated from
the source. This is the fundamental way how
you describe and provide complex IDE fea-
tures in Spoofax.

8

Only transformations to simple error lists
is not enough. For compiler-error messages
and IDE features it is extremely vital that
the location of the error is known. Spoofax
takes care of this. Each node in the AST
is associated with the origin position in the
source code file. As transformations are ap-
plied the position information is preserved.
In the error-reporting transformation we just
need to return the right node to mark the er-
ror location.

A Term Transport Layer: The Stratego
transformation system has to consume the
output of the parse subsystem. Spoofax uses
efficient abstract data types, which are based
on annotated terms Van den Brand et al. [17],
referred to as ATerms. A textual represen-
tation of ATerms is also used to display the
AST. However, it is possible to write adapters
in Java for other term representations.

3.3.3 Editor Language

Spoofax uses a special editor language do de-
fine the features of the generated IDE. In
this language you can define IDE features
like syntax coloring, points where auto com-
pletion is invoked, outline and code-folding
properties. Here we can use the lists which
are created by transformations as information
source. For example, auto-completion uses
the list of types which has been generated by
a Stratego transformation.

3.3.4 Spoofax by Example

Again we use our small DSL from the previ-
ous examples to show the basic concepts of
Spoofax. The first thing we do in Spoofax
is to write down the grammar. For our gram-
mar we import the ’Common’ grammar which
contains often used parser rules like white-
space handling, numbers, identifiers etc. In
SDF you write first then matching symbols
followed by the resulting symbol. In the curly
braces you can additional information, in ex-

ample the name of the AST node.
module GamlorEntityLanguage
imports Common
export s

context−f r e e s t a r t −symbols
Sta r t

context−f r e e syntax

EntityDef ∗ −> Star t { cons (" E n t i t i e s ") }
" e n t i t y " ID " (" F i e ld ∗ ") "

−> EntityDef { cons (" Entity ") }
ID " : " Type −> Fi e ld { cons (" F i e l d ") }
ID −> Type { cons (" Type ") }

After creating the grammar we start to
build the compilation process by creating a
translation to Java. We create rules which
translate each node of the generated AST to
a piece of text. The AST-nodes of entities are
translated to classes, the fields to getters and
setters. In the snippet below we take a ’Field’-
AST node and replace it with the given text.
Within some parts are replaces with variables.
to−java : F i e ld (x , Type (t)) −> $ [

p r i v a t e [t] [x] ;
p u b l i c [t] get_ [x] {

re turn [x] ;
}
p u b l i c void set_ [x] ([t] [x]) {

t h i s . [x] = [x] ;
}

]

The second step is to improve the IDE
support for our DSL. Let’s take a look at
the error detection for our DSL. For exam-
ple, we should check that a property uses a
type which actually exists. For this, we cre-
ate a list of known entities with the Stratego
transformation language. Then we add a rule
which checks that the type of a field is either
built in or one of the entities.
// Create a l i s t o f known e n t i t i e s
record−e n t i t y :
Ent ity (x , body) −> Entity (x , body)
with

// Create a lookup r u l e
r u l e s (

GetEntity :+ x −> x
)

// Check that a f i e l d only uses known types
type−e r r o r :
F i e ld (x , Type (type))

−> (type , $ [Type [type] i s not d e f i n e d])
where

not (! type => " S t r i n g ") ;

9

Figure 10: The IDE for our DSL

not (! type => " Int ") ;
not (! type => " Long ") ;
not(<GetEntity> type) // lookup type

The list of known entities is used for fur-
ther IDE features, like type-completion:

complet ions
// Syntax complet ion :
complet ion template

: "msg " <msg> (blank)
complet ion template

: " e n t i t y " <e> " {}" (blank)

// Semantic (i d e n t i f i e r) complet ion :
complet ion proposer

: ed i to r −complete
complet ion t r i g g e r : " : "

We can add further features to the IDE sup-
port like syntax highlighting, code folding etc.
The final result is a nice IDE for our language,
as shown in figure 10. As last step we can ex-
port our IDE features as Eclipse plug-in and
use the DSL for our projects.

4 Comparisons
As discussed there are different approaches
for language workbenches. MPS and Spoofax
tackle DSL in a very different way. That’s
why it’s interesting to compare these two re-
alizations and find out where their strengths
are. Because Actifsource is not a language
workbench it is covered more briefly than the
other two tools.

4.1 Integration With Other Tools

In this section compare how the three tools
are integrated with other tools.

4.1.1 Integration with Text Based
Tools

Here MPS has serious short comings due to its
model-based nature. Text-based tools don’t
work for MPS. MPS uses XML as storage
format, but the stored XML documents are
very technical and not ‘human’ readable. This

10

means that the whole text-based tool chain
programmers are used to doesn’t work with
MPS. Diff and merge tools, text-editors and
other text-tools only show the raw XML. MPS
supports popular version-control systems and
brings its own merge/change/diff-view which
shows the changes in the right format. As long
as you use a version control system supported
by MPS the situation acceptable. But even
for some more complex changes MPS only
shows the underlying XML-storage instead of
the regular MPS views. The issues go further.
Even regular copy and paste functions don’t
work. You cannot copy a code-snippet from a
text-source like a tutorial into MPS. Because
MPS cannot deal with text, it needs a com-
plete model. This situation is a bit improved
in the upcoming MPS 2.0 [11].

The situation in Actifsource looks very
similar to MPS. It stores its models in XML-
files as well and brings its own diff tools for
version control systems. Since Actifsource is
not a replacement for regular programming
language, but rather a helpful addition the
situation is not as bad.

In Spoofax all text-based tools work just
fine because it is all text based. For ver-
sion control Spoofax even has a clear nam-
ing scheme to distinguish generated files from
hand edited files. All files which have ’.gener-
ated.’ in the name shouldn’t be checked in to
a version contol system.

4.1.2 Integration with Continuous
Build Tools

MPS provides a way to build the languages
and projects with Apache Ant. So it is pos-
sible to build it with most continuous build
tools for Java. MPS actually brings its own
DSL to describe the build process. This is
also based on Ant but provides a nicer syn-
tax. MPS creates a bootstrap Ant build-script
which then calls into the scripts written in the
DSL. However, the default generated build
script contains hard references to the MPS-

system, which could be different on a build-
server than on a developers machine

ctifsource also brings Apache Ant tasks
with it. This allows you to run the Actifsource
model to code generator during the build.

Spoofax also uses Apache Ant as build
tool and a Spoofax project can be build on
most continuous build systems. Unlike MPS
it doesn’t bring its any DSL to describe the
build.

4.1.3 Unit-Testing

Once again MPS brings its own testing DSL
with it. This DSL is based on the popular
JUnit testing framework. It contains special
support for instantiating parts of the model
under tests. It allows you to use your DSL
in the test-case ad write a small snippet in
your DSL. In the test you then get the model-
instance where you can check if the model be-
haves as expected. For example to test a math
DSL you write a snippet in the math DSL.
Then you get the model instance in the test
to perform tests on it.

Actifsource and Spoofax don’t have spe-
cial support for testing. Of course you can
use the regular tooling like JUnit and Eclipse
plug-ins to create test cases.

4.1.4 Integration with Environment

MPS doesn’t have any special integration with
other tools. While it is based on the IntelliJ
IDEA platform it doesn’t provide any export
mechanism to that IDE. It can use some IDEA
plug-ins, but by no means all IntelliJ IDEA
plug-ins. Therefore MPS is pretty isolated.

In contrast Actifsource and Spoofax are
regular Eclipse plug-ins and can be used to-
gether with other plug-ins. Furthermore,
Spoofax allows exporting the created lan-
guages as stand-alone Eclipse plug-in.

11

4.2 Creating DSLs

4.2.1 Defining Grammars and Com-
plex Languages

Both, MPS and Spoofax, allow you to de-
fine fairly complex languages. In Spoofax you
can create arbitrary context-free languages.
In MPS you can create complex meta-models
and editors to build languages.

Actifsource is not a language workbench,
hence it cannot be compared with the other
two tools.

4.2.2 Transformation

MPS, Actifsource and Spoofax use a trans-
formation language to translate the source
DSL to the target language. All three tools
use a similar approach where you can write
a template and then replace the right parts
of the template according to the source ma-
terial. Spoofax and Actifsource translate the
output to text. MPS transforms DSL-models
to another program-models, although model
to text transformations are also supported.

4.2.3 Debugging

MPS brings debugging support for its Base
Language and the extensions to that lan-
guage. It is possible to extend the debugging
support for a DSL as long as it is based on the
Base Language. However, for DSLs not inte-
grated into the Base Language no debugger is
available. You cannot even step through the
final resulting Java code. For that you need
to use an external IDE like Eclipse or IntelliJ
IDEA.

Actifsource doesn’t have a model debug-
ger, but you can use the regular Eclipse de-
bugger to debug the generated code.

Spoofax itself doesn’t bring any direct de-
bugger support for generated DSLs. However,
since it’s an Eclipse plug-in you can use the
regular Eclipse debugger to debug the gener-
ated code. And it is possible to use the under-

lying Eclipse infrastructure to implement the
debugger support separately.

4.3 IDE assistance

Let’s take a look at the IDE support of the
three tools.

4.3.1 Syntax Highlighting, Code Fold-
ing

MPS and Spoofax provide good support to
implement syntax highlighting and code fold-
ing. In MPS this is done by changing the style
of elements in the editor of a model. For this
a CSS-like language is used to define the style
of the different elements. In Spoofax you can
define syntax highlighting and code folding in
the editor language. By default, certain ele-
ments like terminal symbols are already col-
ored appropriate. You then can give colors of
other nodes-types in the AST.

Although Actifsource isn’t a language
workbench it still brings limited support for
syntax highlighting. This is useful when you
translate models into a certain programming
language. Then the syntax highlighting helps
to read the generated code.

4.3.2 Navigation & Discoverability

In MPS code-navigation works extremely well
for the MPS languages and for created DSLs.
MPS always knows to what you’re referring
to in your language. You don’t need to do
any additional work. This way you can nav-
igate along definitions of any symbols, types
etc. You can also find all locations where a
symbol is used. Additionally you always can
open up the concept of the current element
to find out how something is defined. This is
also useful to learn MPS itself, since you can
take a look at the implementation of the MPS
languages.

Actifsource brings also excellent support
for navigating along the models. You can find

12

the definitions, references, subtypes etc. for
any artifact in the model.

In Spoofax code navigation and discov-
erability are very different for the Spoofax
languages, SDF and Stratego, and DSLs
you create yourself. For the Spoofax lan-
guages there are limited navigation features
available. You can navigate to the defini-
tion of transformation-rules and grammar-
productions. But advanced navigation fea-
tures like finding all usage locations of a sym-
bols are not supported. For such cases you
are stuck with text-searching for symbols and
definitions across the different code artifacts.
For the DSL you easily can define look-up ta-
bles for symbols and add provide navigation
support, although some work is required to
add this features for your DSL.

4.3.3 Error-Detection

In MPS typical errors are prohibited by the
model approach. You cannot enter DSL code
not defined by the model. Additionally, you
can define constrains on the model that are
validated at runtime. For complex error de-
tection you can add type-system definitions
where you can manually program validations
of the models.

Actifsource also catches most errors be-
cause you cannot write anything which isn’t
defined by the meta-model. Besides that you
can add additional validation rules, written in
Java.

In Spoofax there are two types of error
detection. All syntactic errors are checked by
Spoofax and marked in the IDE. For semantic
errors you need to define transformation rules
which return the appropriate errors.

4.3.4 Auto-Completion

Again MPS benefits from its model based pro-
gramming that it automatically can infer a
lot of information and bring the appropriate
auto-completion suggestions. Also constrains

on the model are honored in the suggestions.
To polish the editor you can define ‘inten-
tions’ to your model. Intentions are sugges-
tions, transformations, refactorings, etc, ap-
propriate for current code.

The same applies to Actifsource auto-
completion; it can give you useful suggestion
due to the model restrictions. You can refine
the auto completion with additional rules.

Like before, in Spoofax you use Stratego to
transform the AST to look-up tables. These
lookup tables are then used to provide appro-
priate auto completion at the right locations.

4.3.5 Refactoring Support

In MPS basic refactorings like renaming, move
and safe deletion are implemented automat-
ically. For MPS languages more advanced
refactorings are available. Additional refac-
torings for your DSL can be defined with a
special refactoring language to describe the
transformations on the model.

Actifsoure brings some basic refactorings
like renaming with it. However you cannot
create more complex refactorings yourself.

At the moment Spoofax doesn’t provide
any direct support for refactoring. The
Spoofax team hopes that refactorings can be
described declaratively in the future [15]. But
it isn’t implement right now. Of course, you
can fall back to the Eclipse platform to imple-
ment refactorings for your DSL in Java with
the Eclipse APIs.

4.4 Combination of DSLs

MPS strongly encourages to create many
small DSLs and the combine and reuse DSLs.
For example, MPS provides a collection of
extensions to the Base Language which can
be optionally included. Also all MPS specific
languages like those for concepts, constrains,
tranformations often resue parts of the same
language.

To support this kind of combination of

13

DSLs MPS strongly relies on the fact that ev-
erything is described with MPS concepts and
that there’s no parsing required. It also relies
on the fact that transformations are usually
model to model transformations which end up
in a Base Language model. If the different
DSL are translated to different models, let’s
say to Java and Javascript, then the combina-
tions of DSL is not possible without redefining
one of the transformations.

Actifsource also allows you to refer to ex-
isting models and reuse parts of it, similar to
MPS.

In Spoofax allows you to use multiple DSL
side by side. You can create two separates
DSLs and the export them as Eclipse plug-
in. Then you can install both plug-in and
use both languages in your project. Also the
SDF language is modular which makes it pos-
sible to reuse syntax definition Kats et al. [16].
However, I didn’t find a mechanism to import
or refer to existing DSLs and reuse their im-
plementation. I also belief that it’s hard to
combine and reuse the transformation and the
editor definitions.

4.5 Changing the DSL

In MPS you can freely change the representa-
tion of the DSL, without destroying existing
code base. This is possible because in this case
you only change the visual representation of
the language but not the semantic meaning
of it. Some simple refactorings like moving
a property of a concept to a parent concept
also work without breaking existing code. But
more complex changes will break existing pro-
grams.

Actifsource doesn’t support major meta-
model changes. When you change the meta-
model you may break DSLs.

In Spoofax there is no refactoring avail-
able. Like other text-based DSLs it’s hardto
change the syntax or semantic meaning of the
language without breaking the existing code.

4.6 Overview & Recommendations

The overview of the strengths and weaknesses
of the three compared tools are listed in table
1.

Also I want to close with recommendations
to pick the right tool for the right job.

MPS is a great tool when you want to
create a collection of DSLs, which then are
combined to implement a complex system.
Additionally the DSL code should live rela-
tively isolated from the rest of the system, be-
cause it only can be edited in MPS. In such
cases MPSs excellent support for complex lan-
guages and IDE support can unleash the full
power of MPS. Where MPS is not usable is in
scenarios where you develop a DSL and then
distribute it as plug-in/system to the devel-
opers. MPS is a model based island, which
is hard to combine with other text based sys-
tems.

Actifsource is great tool when you need to
model complex systems and UML is an ap-
propriate model language. In such cases it
is a great addition that works together with
other programming languages.

Spoofaxs strength is to build text based
DSLs for Eclipse. These DSLs then can be
used together with general purpose languages
in the same project. Spoofax is also optimal
when you want to distribute your DSL in form
of an Eclipse plug-in.

5 Related Work

There have already been comparisons of lan-
guage factories by Tony Clark and Laurence
Tratt [25]. They focused on a broader spec-
trum of ways to create DSLs, particular
languages which encourage building internal
DSLs.

Another comparison of different language
workbenches was made by Bernhard Merkle
[2], who analyzed a broad spectrum of tools.

It is also worth to mention that currently
a language workbench competition [23] is pre-

14

MPS Spoofax Actifsource
Integration With Text Based Tools – + 0
Integration With Continious Build Tools 0 0 0
Unit-Testing + 0 0
Integration With Environment - ++ ++
Defining Grammars And Complex Languages ++ ++ N/A
Transformation ++ ++ +
Debugging + 0 0
Syntax Highlighning, Code Folding ++ ++ N/A
Navigation & Discoverability ++ 0 +
Error-Detection ++ + +
Auto-Completion ++ + ++
Refactoring Support + 0 0
Combination of DSLs ++ + N/A
Refactoring the DSL + 0 N/A

N/A Actifsource is not a language workbench, therefore it can only be compared partially

++ Excellent support for area/features

+ Good support for this area/features

0 No particular support for this area/features

- Bad support for this area/features

– Very bad support for this eare/features

Table 1: Strengh and Weaknesses of Spoofax, MPS and Actifsource

pared for the Code Generation 2011 confer-
ence. There, different language workbenches
provide a implementation of the same task.
The goal is to be able to compare strengths
and weaknesses.

6 Conclusions

In this paper I’ve compared three different
language workbench implementations, MPS
and Actifsource which are model-based and
Spoofax which creates regular textual lan-
guages. All tree solutions provide a conve-
nient way to define and implement a DSL to-
gehter with IDE support.

MPS gains from its model-based approach
superior IDE support, but it suffers heav-

ily that it cannot integrate to the text-based
mainstream tooling. If you can live with a rel-
atively isolated system which provides great
IDE support for your DSLs you should take a
look at MPS.

Actifsource is a tool which can help mod-
eling complex systems with UML models.

Spoofaxs traditional approach integrates
well with other text-based tools and benefits
from the Eclipse platform. However it cur-
rently cannot provide the same level of IDE
support for its own DSL and the user defined
DSLs. If you’re interested in creating DSLs
and want to take advantage of existing tech-
nologies the more pragmatic text based ap-
proach is probably a better solution. Take a
look at Spoofax or similar tools.

.

15

References
[1] actifsource GmbH [2010], ‘Actifsource’.

URL: http://www.actifsource.com/ (accessed 15th December 2010)

[2] Bernhard Merkle [2010], Textual modeling tools: overview and comparison of language
workbenches, in ‘Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion’, SPLASH ’10,
ACM, New York, NY, USA, pp. 139–148.
URL: http://doi.acm.org/10.1145/1869542.1869564

[3] Charles Simonyi [1995], ‘The death of computer languages,the birth of intentional pro-
gramming’.
URL: ftp://ftp.research.microsoft.com/pub/tr/tr-95-52.doc

[4] E. Visser [1997], Scannerless generalized-lr parsing, Technical report.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.7828

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal
[1996], Pattern-Oriented Software Architecture Volume 1: A System of Patterns, 1 edn,
Wiley.
URL: http://www.worldcat.org/isbn/0471958697

[6] J. Heering, P. R. H. Hendriks, P. Klint and J. Rekers [1989], ‘The syntax definition
formalism sdf, reference manual’, SIGPLAN Not. 24, 43–75.
URL: http://doi.acm.org/10.1145/71605.71607

[7] J.-M. Favre [2005], Languages evolve too! changing the software time scale, in ‘Principles
of Software Evolution, Eighth International Workshop on’, pp. 33 – 42.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01572304

[8] Jean Bézivin [2007], On the Unification Power of Models, in ‘Software and System
Modeling’.
URL: http://www.sciences.univ-nantes.fr/lina/atl/www/papers/OnTheUnificationPowerOfModels.pdf

[9] Jeroen Scheerder Joost Visser [2000], ‘A quick introduction to sdf’.
URL: ftp://ftp.stratego-language.org/pub/stratego/docs/sdfintro.pdf

[10] JetBrains [2010a], ‘Jetbrains MPS’.
URL: http://www.jetbrains.com/mps (accessed 20th November 2010)

[11] JetBrains [2010b], ‘Jetbrains MPS 2.0 M1 new features’.
URL: http://confluence.jetbrains.net/display/MPS/What’s+new+in+MPS+2.0+M1
(accessed 20th October 2010)

[12] JetBrains [2010c], ‘MPS 1.5 user guide, section platform languages’.
URL: http://confluence.jetbrains.net/display/MPSD1/MPS+User’s+Guide (accessed
27th November 2010)

16

[13] JetBrains [2010d], ‘MPS user guide, stubs’.
URL: http://confluence.jetbrains.net/display/MPSD1/Stubs (accessed 27th November
2010)

[14] Kristoffer Norling Mikael Blom Peter Fritzson Adrian Pop [2008], ‘Comment- and
indentation preserving refactoring and unparsing for modelica’.
URL: https://www.modelica.org/events/modelica2008/Proceedings/sessions/session6a3.pdf

[15] Lennart C. L. Kats and Eelco Visser [2010], The Spoofax language workbench. Rules for
declarative specification of languages and IDEs, in M. Rinard, ed., ‘Proceedings of the
25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17-21, 2010, Reno, NV, USA’,
pp. 444–463.
URL: http://researchr.org/publication/KatsVisser2010

[16] Lennart C. L. Kats, Eelco Visser and Guido Wachsmuth [2010], Pure and declarative
syntax definition: Paradise lost and regained, in ‘Proceedings of Onward! 2010’, ACM.
URL: http://www.lclnet.nl/publications/pure-and-declarative-syntax-definition.pdf

[17] M. G. T. Van den Brand, H. A. de Jong, P. Klint and P. A. Olivier [2000], ‘Efficient
annotated terms’, Softw. Pract. Exper. 30, 259–291.
URL: http://portal.acm.org/citation.cfm?id=343460.343468

[18] Maartje de Jonge, Emma Nilsson-Nyman, Lennart C. L. Kats and Eelco Visser [2009],
Natural and flexible error recovery for generated parsers, in M. G. J. van den Brand and
J. Gray, eds, ‘Software Language Engineering (SLE 2009)’, Lecture Notes in Computer
Science, Springer, Heidelberg.
URL: http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2009-
024.pdf

[19] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas and Eelco Visser [2008],
‘Stratego/XT 0.17. A language and toolset for program transformation’, Science of
Computer Programming 72(1-2), 52–70. Special issue on experimental software and
toolkits.
URL: http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2008-
011.pdf

[20] Martin Fowler [2005], ‘Language workbenches: The killer-app for domain specific lan-
guages?’.
URL: http://www.martinfowler.com/articles/languageWorkbench.html (accessed 22th
December 2010)

[21] OMG [2010], ‘Uml specification’.
URL: http://www.omg.org/spec/UML/ (accessed 15th December 2010)

[22] Peter Sommerlad, Guido Zgraggen, Thomas Corbat and Lukas Felber [2008], Retaining
comments when refactoring code, in ‘Companion to the 23rd ACM SIGPLAN conference
on Object-oriented programming systems languages and applications’, OOPSLA Com-
panion ’08, ACM, New York, NY, USA, pp. 653–662.
URL: http://doi.acm.org/10.1145/1449814.1449817

17

[23] S. Kelly A. Hulshout J. Warmer P. J. Molina B. Merkle K. Thoms M. Völter E.Visser
[2010], ‘Language workbench competition 2011’.
URL: http://www.languageworkbenches.net/ (accessed 16th December 2010)

[24] Sergey Dmitriev [2004], ‘Language oriented programming: The next programming
paradigm’.
URL: http: // www. jetbrains. com/ mps/ docs/ Language_ Oriented_ Programming.
pdf

[25] Tony Clark and Laurence Tratt [2009], Language factories, in ‘Proceeding of the 24th
ACM SIGPLAN conference companion on Object oriented programming systems lan-
guages and applications’, OOPSLA ’09, ACM, New York, NY, USA, pp. 949–955.
URL: http://doi.acm.org/10.1145/1639950.1640062

18

http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf

	1 Introduction
	2 Criteria For Language Workbenches
	3 The Tools
	3.1 Meta Programming System MPS
	3.1.1 Programs as Models
	3.1.2 MPSs Collection of Languages
	3.1.3 Model to Model Transformations
	3.1.4 Talking To The Outside World
	3.1.5 MPS by Example

	3.2 Actifsource
	3.2.1 Similarities to MPS
	3.2.2 Differences to MPS
	3.2.3 Different Purpose
	3.2.4 Actifsource by Example

	3.3 Spoofax
	3.3.1 Syntax Definition Formalism
	3.3.2 Transformations as Fundamental Concept
	3.3.3 Editor Language
	3.3.4 Spoofax by Example

	4 Comparisons
	4.1 Integration With Other Tools
	4.1.1 Integration with Text Based Tools
	4.1.2 Integration with Continuous Build Tools
	4.1.3 Unit-Testing
	4.1.4 Integration with Environment

	4.2 Creating DSLs
	4.2.1 Defining Grammars and Complex Languages
	4.2.2 Transformation
	4.2.3 Debugging

	4.3 IDE assistance
	4.3.1 Syntax Highlighting, Code Folding
	4.3.2 Navigation & Discoverability
	4.3.3 Error-Detection
	4.3.4 Auto-Completion
	4.3.5 Refactoring Support

	4.4 Combination of DSLs
	4.5 Changing the DSL
	4.6 Overview & Recommendations

	5 Related Work
	6 Conclusions

